5 X I ## RESISTORS # | Symbol Description | R1....22,000 ohm | \(\frac{1}{2} \) watt....... | R2....1 meg ohm | \(\frac{1}{2} \) watt....... | R3...1 meg ohm Volume Control & Off-On Switch (SWI) | R4...4.7 meg ohms | \(\frac{1}{2} \) watt... | R5...470,000 ohms | \(\frac{1}{2} \) watt... | R6...470,000 ohms | \(\frac{1}{2} \) watt.... | R7....150 ohms | \(\frac{1}{2} \) watt..... | R8...33 ohms 1 watt | watt....... | R9...1000 ohms 1 watt | watt................ # **CONDENSERS** | ClaGang 0 to 420 mmfd) | |--------------------------| | C1bGang 0 to 108.0 mmfd) | | (Spot welded to drui | | C250 mmfd Ceramic | | C3250 mmfd Ceramic | | C401 mfd, 400 volts | | C5250 mfd, 500 volts | | C6 01 mfd, 400 v. paper | | C702 mfd, 400 v. paper | | C81 mfd, 200 v. paper | | C903 mfd, 400 v. paper. | | C10a50 mmfd 150 volts | | C10b30mmfd 150 v.) Elec. | | C1103 mfd 400 v. paper. | | C121 mfd 400 v paper | | CIN IIIIU TOU V DADCI | # COILS, TRANSFORMERS, Etc. | L1Antenna Loop | |----------------------------| | L2Coil, Oscillator | | T1Transformer, 1st IF | | T2Transformer, 2nd I.F | | T3Transformer, Output | | Speaker (5" P.M.) and | | output Transformer | | SW1Switch On-OffPart of R3 | # **VOLTAGE DATA** - All readings made between tube socket terminals and B minus (terminal of On-Off switch). - Dial turned to low frequency end; volume control at minimum. - Measured on 117 Volts AC line. When measured from DC line, voltages may be slightly lower. - Voltages measured with Vacuum Tube Voltmeter. Readings taken with a 1,000 ohm per volt meter will be approximately the same except for those marked with an asterisk * in the voltage chart; these readings will either be lower or practically zero. # ALIGNMENT PROCEDURE - Connect output meter across voice coil. - Turn receiver volume control full on. - Use an isolation transformer if available, otherwise connect a .1 mfd. condenser in series with low side of signal generator and attach to B minus of chassis. - Use lowest output setting of signal generator capable of producing adequate output meter indication and then proceed as outlined in chart below. - Repeat adjustments to insure good results. ### NOTE To avoid splitting the slotted head of powdered iron core tuning slugs in I.F. transformers, use an alignment tool having a blade $\frac{1}{2}$ " wide. | Step | Dummy Antenna
in Series with
Signal Generator | Connection of
Signal Generator
(High Side) | Signal
Generator
Frequency | Receiver
Gang
Setting | Trimmer
Description | Trimmer
Designation | Type of
Adjustment | |------|---|--|----------------------------------|--------------------------------|-------------------------|------------------------|-----------------------| | 1 | .05 mfd.
condenser | Tuning condenser
Antenna stator | 455 KC | Gang fully open | 2nd IF
1st IF | A, B
C, D | Maximum
Output | | 2 | 250 mmfd.
condenser | Tuning condenser
Antenna stator | 1620 KC | Gang fully
open | Oscillator
(on gang) | E | Maximum
Output | | 3 | Loop of several turns
of wire (or place gen-
erator lead close to
receiver loop for ade-
quate signal). | No physical connection (signal by | 1400 KC | Tune in
generator
signal | Antenna
(on gang) | F | Maximum
Output | | 4 | | alignment, install cha
Pointer Setting Diag | | net. Mount an | d set dial | pointer as | shown in | NOTE: Adjustments B and D are made from underside of chassis. In case of permeability tuned I.F.